
Security Assessment

Empire v3
CertiK Verified on Mar 1st, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

4 Major 4 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

4 Medium 1 Resolved, 3 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

5 Minor 1 Resolved, 4 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

6 Informational 3 Resolved, 3 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY EMPIRE V3

CertiK Verified on Mar 1st, 2023

Empire v3

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

BSC | Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 03/01/2023

KEY COMPONENTS

N/A

CODEBASE
https://bscscan.com/address/0x51A183d8D79df6892Ab7b8f57b33ba70

599515d4#code

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80

...View All

COMMITS
Vault V2,

EmpireToken V3,

Bridge

...View All

19
Total Findings

5
Resolved

0
Mitigated

0
Partially Resolved

14
Acknowledged

0
Declined

0
Unresolved

https://bscscan.com/address/0x51A183d8D79df6892Ab7b8f57b33ba70599515d4#code
https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code
https://bscscan.com/address/0x51A183d8D79df6892Ab7b8f57b33ba70599515d4#code
https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code
https://bscscan.com/address/0x62AB5437563fC655226239cA8146F727E1D28BF4#code

TABLE OF CONTENTS EMPIRE V3

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

BRI-01 : Centralization Risks in Bridge.sol

BRI-02 : Cross chain swap dependencies

ETC-01 : Centralized risk in `addLiquidity`

ETC-02 : Centralization Risks in EmpireToken.sol

BRI-03 : Ineffective `isContract()` Check

ETC-03 : Pancake Pair Should Be Excluded From Rewards

ETC-14 : Variable `_rOwned[account]` Not Updated in Function `includeInReward()`

MAI-01 : Lack of reasonable boundary

ETC-04 : Need max transaction check

ETC-05 : Proper usage of “pure” and “view”

ETC-06 : Potential Sandwich Attacks

ETC-07 : Third Party Dependencies

ETC-08 : Unused Return Value

BRI-04 : Missing Error Messages

ETC-09 : The purpose of function `deliver`

ETC-10 : Typos in the contract

ETC-11 : Redundant SafeMath Usage

ETC-12 : Unused Event

GLOBAL-01 : Unlocked Compiler Version

Optimizations

ETC-13 : Variables That Could Be Declared as Immutable

Appendix

Disclaimer

TABLE OF CONTENTS EMPIRE V3

CODEBASE EMPIRE V3

Repository

https://bscscan.com/address/0x51A183d8D79df6892Ab7b8f57b33ba70599515d4#code

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code

https://bscscan.com/address/0x62AB5437563fC655226239cA8146F727E1D28BF4#code

Commit

Vault V2,

EmpireToken V3,

Bridge

CODEBASE EMPIRE V3

https://bscscan.com/address/0x51A183d8D79df6892Ab7b8f57b33ba70599515d4#code
https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code
https://bscscan.com/address/0x62AB5437563fC655226239cA8146F727E1D28BF4#code
https://bscscan.com/address/0x51A183d8D79df6892Ab7b8f57b33ba70599515d4#code
https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code
https://bscscan.com/address/0x62AB5437563fC655226239cA8146F727E1D28BF4#code

AUDIT SCOPE EMPIRE V3

11 files audited 2 files with Acknowledged findings 9 files without findings

ID File SHA256 Checksum

ETC contracts/EmpireToken.sol
0afafe3af46bedbc17b05ee59d2b8c73cfcc2ac

2d69f5be05f7ed77aeaa55cf7

BRI contracts/Bridge.sol
96b045e566392d28d3fc4400247daea58da4b

b707cdbe7a8fbee6a52f9017659

OWN @openzeppelin/contracts/access/Ownable.sol
75e3c97011e75627ffb36f4a2799a4e887e1a3

e27ed427490e82d7b6f51cc5c9

IER @openzeppelin/contracts/token/ERC20/IERC20.sol
94f23e4af51a18c2269b355b8c7cf4db8003d0

75c9c541019eb8dcf4122864d5

SMC @openzeppelin/contracts/utils/math/SafeMath.sol
0dc33698a1661b22981abad8e5c6f5ebca0df

e5ec14916369a2935d888ff257a

COE @openzeppelin/contracts/utils/Context.sol
1458c260d010a08e4c20a4a517882259a23a

4baa0b5bd9add9fb6d6a1549814a

EBV EmpireBridgeVault.sol
0b21c173e384196a288398d707677a2ee0f4b

68988699b0d1ff9ac88bcd9fe1c

OWA @openzeppelin/contracts/access/Ownable.sol
75e3c97011e75627ffb36f4a2799a4e887e1a3

e27ed427490e82d7b6f51cc5c9

PAU @openzeppelin/contracts/security/Pausable.sol
5b6abc290190f46b9941c674594eee083a3fe

6b92d1828d0cfefacc94d1cac9a

RGC
@openzeppelin/contracts/security/ReentrancyGuar

d.sol

aa73590d5265031c5bb64b5c0e7f84c44cf5f8

539e6d8606b763adac784e8b2e

COU @openzeppelin/contracts/utils/Context.sol
1458c260d010a08e4c20a4a517882259a23a

4baa0b5bd9add9fb6d6a1549814a

AUDIT SCOPE EMPIRE V3

APPROACH & METHODS EMPIRE V3

This report has been prepared for Empire v3 to discover issues and vulnerabilities in the source code of the Empire v3

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS EMPIRE V3

FINDINGS EMPIRE V3

This report has been prepared to discover issues and vulnerabilities for Empire v3. Through this audit, we have uncovered

19 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

BRI-01 Centralization Risks In Bridge.Sol
Centralization /

Privilege
Major Acknowledged

BRI-02 Cross Chain Swap Dependencies Logical Issue Major Acknowledged

ETC-01 Centralized Risk In addLiquidity
Centralization /

Privilege
Major Acknowledged

ETC-02
Centralization Risks In

EmpireToken.Sol

Centralization /

Privilege
Major Acknowledged

BRI-03 Ineffective isContract() Check Volatile Code Medium Acknowledged

ETC-03
Pancake Pair Should Be Excluded

From Rewards
Logical Issue Medium Acknowledged

ETC-14

Variable _rOwned[account] Not

Updated In Function

includeInReward()

Logical Issue Medium Acknowledged

MAI-01 Lack Of Reasonable Boundary Logical Issue Medium Resolved

ETC-04 Need Max Transaction Check Logical Issue Minor Acknowledged

ETC-05 Proper Usage Of “Pure” And “View” Coding Style Minor Resolved

FINDINGS EMPIRE V3

19
Total Findings

0
Critical

4
Major

4
Medium

5
Minor

6
Informational

ID Title Category Severity Status

ETC-06 Potential Sandwich Attacks Logical Issue Minor Acknowledged

ETC-07 Third Party Dependencies Volatile Code Minor Acknowledged

ETC-08 Unused Return Value Volatile Code Minor Acknowledged

BRI-04 Missing Error Messages Coding Style Informational Acknowledged

ETC-09 The Purpose Of Function deliver Control Flow Informational Acknowledged

ETC-10 Typos In The Contract Coding Style Informational Resolved

ETC-11 Redundant SafeMath Usage Language Specific Informational Acknowledged

ETC-12 Unused Event Coding Style Informational Resolved

GLOBAL-01 Unlocked Compiler Version Language Specific Informational Resolved

FINDINGS EMPIRE V3

BRI-01 CENTRALIZATION RISKS IN BRIDGE.SOL

Category Severity Location Status

Centralization /

Privilege
Major

contracts/Bridge.sol (Bridge): 122~143, 176, 184, 19

2, 202, 206, 210, 217, 224, 231, 244
Acknowledged

Description

In the contract Bridge the role validator has authority over the functions below:

function redeem() : to transfer tokens to another chain. Any compromise to the validator account may allow the

hacker to take advantage of this authority.

In the contract Bridge the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority.

BRI-01 EMPIRE V3

Function Function Calls

Authenticated Role

Function State Variables

Function State Variables

Function

Function State Variables

Function

Function State Variables

Function

Function State Variables

Function Function Calls

setPause _pause

_owner

setMaxAmount

setTreasury

withdrawERC20

setMinAmount

updateBridgeTokenPairList

setValidator

withdrawETH

setFee

setUnpause

maxAmount

TREASURY

minAmount

validator

fee

_unpause

BRI-01 EMPIRE V3

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

BRI-01 EMPIRE V3

Alleviation

The team acknowledged this issue and stated that they will use timelock + multi-sig wallet in the future.

BRI-01 EMPIRE V3

BRI-02 CROSS CHAIN SWAP DEPENDENCIES

Category Severity Location Status

Logical Issue Major contracts/Bridge.sol (Bridge): 122~143 Acknowledged

Description

The logic ensures the cross-chain transaction atomicity is not implemented in the contract. The validator could be a

message server host by the owner or an intermediate 3rd party application, hence the parameters in the redeem() function

could not be guaranteed to correspond to the swap() .

The scope of the audit treats the above-mentioned application entities as black boxes and assumes their functional

correctness. However, in the real world, 3rd parties can be compromised, which may lead to lost or stolen assets. Suppose

the cross-chain transaction atomicity is not guaranteed properly. In that case, the user deposits tokens into the source chain,

but not be able to redeem the correct token amount from the target chain.

Recommendation

We encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when unexpected

activities are observed.

Alleviation

The team acknowledged this issue and stated that they will constantly monitor the 3rd parties for security.

BRI-02 EMPIRE V3

ETC-01 CENTRALIZED RISK IN addLiquidity

Category Severity Location Status

Centralization /

Privilege
Major

contracts/EmpireToken.sol (EmpireToken V3): 80

6~816
Acknowledged

Description

The addLiquidity function calls the uniswapV2Router.addLiquidityETH function with the to address specified as

liquidityWallet for acquiring the generated LP tokens from the EmpireToken-BNB pool. As a result, over time the

liquidityWallet address will accumulate a significant portion of LP tokens. If the liquidityWallet is an EOA

(Externally Owned Account), mishandling its private key can have devastating consequences for the project.

1 function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {

2 _approve(address(this), address(uniswapV2Router), tokenAmount);

3

4 uniswapV2Router.addLiquidityETH{value: ethAmount}(

5 address(this),

6 tokenAmount,

7 0,

8 0,

9 liquidityWallet,

10 block.timestamp

11);

12 }

Recommendation

We advise the to address of the uniswapV2Router.addLiquidityETH function call to be replaced by the contract itself, i.e.

address(this) , and to restrict the management of the LP tokens within the scope of the contract’s business logic. This will

also protect the LP tokens from being stolen if the liquidityWallet account is compromised. In general, we strongly

recommend centralized privileges or roles in the protocol to be improved via a decentralized mechanism or via smart-

contract-based accounts with enhanced security practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness of privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

ETC-01 EMPIRE V3

Alleviation

The team acknowledged this issue and stated that they will use multi-sig wallet in the future.

ETC-01 EMPIRE V3

ETC-02 CENTRALIZATION RISKS IN EMPIRETOKEN.SOL

Category Severity Location Status

Centralization /

Privilege
Major

contracts/EmpireToken.sol (EmpireToken V3): 232, 416,

427, 643, 960, 970, 977, 984, 1001, 1018, 1026, 1033, 104

0, 1051, 1065, 1081, 1103, 1114, 1133; EmpireToken.sol

(fix_ETH): 1083

Acknowledged

Description

In the contract EmpireToken the role _owner has authority over the functions shown in the diagram below.

ETC-02 EMPIRE V3

Authenticated Role

Function

Function

State Variables

Function

State Variables

Function

State Variables

Function

Function Calls

Function

Function Calls

Function

State VariablesFunction

Function

Function State Variables

Function State Variables

Function State Variables

Function Calls

Function

Function

Function

Function State Variables

Function

Function Calls

Function Calls

Function Calls

_owner

includeInReward

updateLiquidityWallet

setRouterAddress

setTeamWallet

withdraw

setSellFees

setMarketingWallet

withdrawToken

excludeFromReward

setBridge

setSwapTokensAmount

setEnableTrading

setBuyFees

setExcludeFromFee

withdrawETH

setSwapAndLiquifyEnabled

setAutomatedMarketMakerPair

liquidityWallet

uniswapV2Router

IUniswapV2Router02

teamWallet

_transferBothExcluded

_transferFromExcluded

_transferToExcluded

_transferStandard

marketingWallet

tokenFromReflection

bridge

numTokensSellToAddToLiquidity

isTradingEnabled

swapAndLiquifyEnabled

ETC-02 EMPIRE V3

Besides, the role _owner also has authority over the function setBridgeVault() , which is used to set the bridgeVault

by the owner. Any compromise to the _owner account may allow the hacker to take advantage of this authority.

In the contract EmpireToken the role bridge has authority over the functions shown in the diagram below.

Function

Function Calls

Function
Function Calls

Authenticated Role

Function Calls

Function Calls

Function Calls

unlock

_transferFromExcluded

_transferBothExcluded

balanceOf

lock

_msgSender

_transferToExcluded

bridge

Any compromise to the bridge account may allow the hacker to take advantage of this authority.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

ETC-02 EMPIRE V3

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and stated that they will use multi-sig wallet in the future.

ETC-02 EMPIRE V3

BRI-03 INEFFECTIVE isContract() CHECK

Category Severity Location Status

Volatile Code Medium contracts/Bridge.sol (Bridge): 154~156 Acknowledged

Description

The implementation of the isContract check can not cover all scenarios. The check can be bypassed if the call is from the

constructor of a smart contract or when the contract is destroyed. Because, in that case, the code size will also be zero.

Recommendation

It is recommended to add the additional msg.sender == tx.origin check to cover all the scenarios. Do note that the check

still works for the current EVM (London) version, but future updates to the EVM or EIP (ex. EIP-3074) might cause the check

to become ineffective.

Alleviation

The team acknowledged this issue and stated that they will implement the suggested code in the future.

BRI-03 EMPIRE V3

ETC-03 PANCAKE PAIR SHOULD BE EXCLUDED FROM REWARDS

Category Severity Location Status

Logical Issue Medium contracts/EmpireToken.sol (EmpireToken V3) Acknowledged

Description

Generally, deflationary tokens are incompatible with DEX and special rules need to be coded for DEX addresses eg.

excluding them from reward. Otherwise, a hacker can exploit the protocol using the reflection mechanism.

The balance of accounts that include rewards is calculated by rAmount/rate , where the rate is determined base on the

total supply. If the deliver() function is executed with significant input, it can significantly decrease rTotal , thereby

allowing for manipulation of the rate.

Scenario

If the pair is not excluded from rewards and a large portion of the token supply is added as the liquidity of a WBNB-EMPIRE

pair, it becomes vulnerable to a flash loan attack.

1. Flash loan WBNB to buy most of EMPIRE in the Pancake pair.

2. Call deliver() function to burn attacker's tokens _rOwned[attacker] , thereby the rate is significantly reduced.

This will result in an increase in the EMPIRE balance of the Pancake pair.

3. Utilize the skim() function of the pair to acquire the increased EMPIRE amount in the pair.

4. Repeat step 2 to increase the EMPIRE balance of the Pancake pair dramatically.

5. With the extra EMPIRE tokens, swap for WBNB without transferring any EMPIRE to the pair to drain the pool.

6. Repay flash loan.

Recommendation

We recommend excluding the dex pair from rewards.

Alleviation

The team acknowledged this issue and decided to leave it as it is for now.

ETC-03 EMPIRE V3

ETC-14 VARIABLE _rOwned[account] NOT UPDATED IN FUNCTION

includeInReward()

Category Severity Location Status

Logical Issue Medium contracts/EmpireToken.sol (EmpireToken V3): 427~438 Acknowledged

Description

 function includeInReward(address account) external onlyOwner() {

 require(account != bridgeVault, "Bridge Vault can't receive reward");

 require(_isExcluded[account], "Account is already included");

 for (uint256 i = 0; i < _excluded.length; i++) {

 if (_excluded[i] == account) {

 _excluded[i] = _excluded[_excluded.length - 1];

 _tOwned[account] = 0;

 _isExcluded[account] = false;

 _excluded.pop();

 break;

 }

 }

 }

Variable _rOwned[account] is not updated in the function includeInReward() , which will make the accounts included

siphon off the tokens out of the balances of all token holders.

The Rate was higher at the moment of the excludeFromReward(account) call, so the _rOwned[account] /

_tOwned[account] ratio is bigger than expected for accounts included in the reward.

Scenario

1. Let _rTotal = 1000

2. and _tTotal = 100

3. then Rate = 1000 / 100 = 10 .

4. AccountA with a balance of 100R/10T (reflections/tokens) is excludedFromReward , then

5. Rate = (1000 - 100) / (100 - 10) = 900 / 90 = 10 is unchanged.

6. Several transfers happen, and 90R are burned and subtracted from _rTotal . _rTotal is now 910.

7. The Rate drops Rate = (910 - 100) / (100 - 10) = 810 / 90 = 9 .

8. All the rewarded accounts get extra 11.1% token balances, except AccountA - it is still 100R/10T.

9. Then AccountA is suddenly includedToReward . Since AccountA _rOwned was not updated, it unintentionally

changes the Rate:

ETC-14 EMPIRE V3

10. Rate = (910 - 0) / (100 - 0) = 910 / 100 = 9.1 .

11. Since the Rate accidentally increased, all the rewarded accounts' token balances decreased by 1.1%.

12. Since AccountA reflection balance is still 100R, its token balance is balance = rOwned / Rate = 100 / 9.1 = 11 .

This is also undesired.

Recommendation

We recommend updating _rOwned[account] and _rTotal to keep the Rate unchanged:

function includeInReward(address account) external onlyOwner() {

 require(_isExcluded[account], "Account is not excluded");

 for (uint256 i = 0; i < _excluded.length; i++) {

 if (_excluded[i] == account) {

 uint256 currentRate = _getRate();

 _rTotal = _rTotal.sub(_rOwned[account]);

 _rOwned[account] = _tOwned[account].mul(currentRate);

 _tOwned[account] = 0;

 _rTotal = _rTotal.add(_rOwned[account]);

 _isExcluded[account] = false;

 _excluded[i] = _excluded[_excluded.length - 1];

 _excluded.pop();

 break;

 }

 }

 }

Alleviation

The team acknowledged this issue and decided to leave it as it is for now.

ETC-14 EMPIRE V3

MAI-01 LACK OF REASONABLE BOUNDARY

Category Severity Location Status

Logical

Issue
Medium

contracts/EmpireToken.sol (EmpireToken V3): 984~1016; contracts/Bri

dge.sol (Bridge): 224~227
Resolved

Description

The variables fee , buyFee , and sellFee do not have reasonable boundaries, so they can be given arbitrary values.

Recommendation

We recommend adding reasonable upper and lower boundaries to all the configuration variables.

Alleviation

The team resolved this issue in https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code , and

set the max total fee when buy and sell as 50%.

MAI-01 EMPIRE V3

ETC-04 NEED MAX TRANSACTION CHECK

Category Severity Location Status

Logical Issue Minor contracts/EmpireToken.sol (EmpireToken V3): 1 Acknowledged

Description

It is recommended to add the max transaction amount check as many other deflation tokens(e.g. Safemoon) do to prevent

the big whale.

Recommendation

We advise the client to modify the code as the aforementioned information.

Alleviation

The team acknowledged this and stated that this aligns with their original design.

ETC-04 EMPIRE V3

ETC-05 PROPER USAGE OF “PURE” AND “VIEW”

Category Severity Location Status

Coding Style Minor contracts/EmpireToken.sol (EmpireToken V3): 241~256 Resolved

Description

Function state mutability should be restricted to view instead of pure for the reason that _name , _symbol , _tTotal ,

and _decimals are all state variables.

Recommendation

We advise the client to modify the code as the aforementioned information.

Alleviation

The team heeded our advice and resolved this issue in

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code .

ETC-05 EMPIRE V3

ETC-06 POTENTIAL SANDWICH ATTACKS

Category Severity Location Status

Logical Issue Minor contracts/EmpireToken.sol (EmpireToken V3): 808 Acknowledged

Description

Potential sandwich attacks could happen if calling

uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens and uniswapV2Router.addLiquidityETH

without setting restrictions on slippage.

For example, when we want to make a transaction of swapping 100 A Token for 1 Eth, an attacker could raise the price of

Eth by adding A Token into the pool before the transaction so we might only get 0.1 Eth. After the transaction, the attacker

would be able to withdraw more than he deposited because the total value of the pool increases by 0.9 Eth.

Recommendation

We recommend setting reasonable minimum output amounts, instead of 0, based on token prices when calling the

aforementioned functions.

Alleviation

The team acknowledged this issue and decided to leave it as it is for now.

ETC-06 EMPIRE V3

ETC-07 THIRD PARTY DEPENDENCIES

Category Severity Location Status

Volatile Code Minor contracts/EmpireToken.sol (EmpireToken V3): 792 Acknowledged

Description

The contract is serving as the underlying entity to interact with third-party protocol, including:

uniswapV2Router

The scope of the audit would treat those 3rd party entities as black boxes and assume their functional correctness. However,

in the real world, 3rd parties may be compromised that led to assets being lost or stolen.

Recommendation

We understand that the business logic requires interaction with third parties. We encourage the team to constantly monitor

the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

The team acknowledged this issue and stated that they will monitor 3rd parties to secure investors.

ETC-07 EMPIRE V3

ETC-08 UNUSED RETURN VALUE

Category Severity Location Status

Volatile Code Minor contracts/EmpireToken.sol (EmpireToken V3): 809~816 Acknowledged

Description

The return value of an external call is not stored in a local or state variable.

809 uniswapV2Router.addLiquidityETH{value: ethAmount}(

810 address(this),

811 tokenAmount,

812 0,

813 0,

814 liquidityWallet,

815 block.timestamp

816);

Recommendation

We recommend checking or using the return values of all external function calls.

Alleviation

The team acknowledged this issue and decide to leave it as it is for now.

ETC-08 EMPIRE V3

BRI-04 MISSING ERROR MESSAGES

Category Severity Location Status

Coding Style Informational contracts/Bridge.sol (Bridge): 232 Acknowledged

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

The team acknowledged this issue and stated that they will implement suggested code in the future.

BRI-04 EMPIRE V3

ETC-09 THE PURPOSE OF FUNCTION deliver

Category Severity Location Status

Control Flow Informational contracts/EmpireToken.sol (EmpireToken V3): 374~386 Acknowledged

Description

The function deliver can be called by anyone. It accepts an uint256 number parameter tAmount . The function reduces

the Empire token balance of the caller by rAmount , which is tAmount reduces the transaction fee. Then, the function adds

tAmount to variable _tFeeTotal , which represents the contract's total transaction fee.

Recommendation

We wish the team could explain more on the purpose of having such functionality.

Alleviation

The team acknowledged this issue and stated that this function is made just in case somebody wants to burn their tokens

and distribute it as reflections between all holders.

ETC-09 EMPIRE V3

ETC-10 TYPOS IN THE CONTRACT

Category Severity Location Status

Coding Style Informational contracts/EmpireToken.sol (EmpireToken V3): 125, 443 Resolved

Description

There are several typos in the code and comments.

1. In the following code snippet, tokensIntoLiqudity should be tokensIntoLiquidity .

1 event LogSwapAndLiquify(

2 uint256 tokensSwapped,

3 uint256 ethReceived,

4 uint256 tokensIntoLiqudity

5);

2. recieve should be receive in the line of comment `//to recieve ETH from uniswapV2Router when swapping.

Recommendation

We recommend correcting all typos in the contract.

Alleviation

The team heeded our advice and resolved this issue in

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code .

ETC-10 EMPIRE V3

ETC-11 REDUNDANT SAFEMATH USAGE

Category Severity Location Status

Language Specific Informational contracts/EmpireToken.sol (EmpireToken V3): 51 Acknowledged

Description

Solidity version >=0.8.0 includes checked arithmetic operations and underflow/overflow by default, making SafeMath

redundant.

Recommendation

We recommend removing the SafeMath library and use standard arithmetic operators to reduce code complexity.

Alleviation

The team acknowledged this issue and decided to leave it as it is for now.

ETC-11 EMPIRE V3

ETC-12 UNUSED EVENT

Category Severity Location Status

Coding Style Informational contracts/EmpireToken.sol (EmpireToken V3): 150 Resolved

Description

150 event LogSetBurnWallet(address indexed setter, address burnWallet);

LogSetBurnWallet is declared in EmpireToken but never emitted.

Recommendation

We advise removing the unused events or emitting them in the intended functions.

Alleviation

The team heeded our advice and resolved this issue in

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code .

ETC-12 EMPIRE V3

GLOBAL-01 UNLOCKED COMPILER VERSION

Category Severity Location Status

Language Specific Informational Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract permits the

user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode between

compilations due to different compiler versions. This can lead to an ambiguity when debugging as compiler specific bugs

may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can be compiled at. For

example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;

Alleviation

The team heeded our advice and resolved this issue in

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code .

GLOBAL-01 EMPIRE V3

OPTIMIZATIONS EMPIRE V3

ID Title Category Severity Status

ETC-13 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

OPTIMIZATIONS EMPIRE V3

ETC-13 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization contracts/EmpireToken.sol (EmpireToken V3): 99, 104 Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

The team heeded our advice and resolved this issue in

https://etherscan.io/token/0x9A2Af0AbB12bee5369B180976Be01E8c80D0e7B6#code .

ETC-13 EMPIRE V3

APPENDIX EMPIRE V3

Finding Categories

Categories Description

Centralization /

Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that

act against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only

functions being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX EMPIRE V3

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER EMPIRE V3

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER EMPIRE V3

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Empire v3 Security Assessment CertiK Verified on Mar 1st, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

